---
linkTitle: Getting started with RedisVL
title: Getting Started with RedisVL
aliases:
- /integrate/redisvl/user_guide/01_getting_started
weight: 01
---
`redisvl` is a versatile Python library with an integrated CLI, designed to enhance AI applications using Redis. This guide will walk you through the following steps:
1. Defining an `IndexSchema`
2. Preparing a sample dataset
3. Creating a `SearchIndex` object
4. Testing `rvl` CLI functionality
5. Loading the sample data
6. Building `VectorQuery` objects and executing searches
7. Updating a `SearchIndex` object
...and more!
Prerequisites:
- Ensure `redisvl` is installed in your Python environment.
- Have a running instance of [Redis Stack](https://redis.io/docs/install/install-stack/) or [Redis Cloud](https://redis.io/cloud).
_____
## Define an `IndexSchema`
The `IndexSchema` maintains crucial **index configuration** and **field definitions** to
enable search with Redis. For ease of use, the schema can be constructed from a
python dictionary or yaml file.
### Example Schema Creation
Consider a dataset with user information, including `job`, `age`, `credit_score`,
and a 3-dimensional `user_embedding` vector.
You must also decide on a Redis index name and key prefix to use for this
dataset. Below are example schema definitions in both YAML and Dict format.
**YAML Definition:**
```yaml
version: '0.1.0'
index:
name: user_simple
prefix: user_simple_docs
fields:
- name: user
type: tag
- name: credit_score
type: tag
- name: job
type: text
- name: age
type: numeric
- name: user_embedding
type: vector
attrs:
algorithm: flat
dims: 3
distance_metric: cosine
datatype: float32
```
Store this in a local file, such as `schema.yaml`, for RedisVL usage.
**Python Dictionary:**
```python
schema = {
"index": {
"name": "user_simple",
"prefix": "user_simple_docs",
},
"fields": [
{"name": "user", "type": "tag"},
{"name": "credit_score", "type": "tag"},
{"name": "job", "type": "text"},
{"name": "age", "type": "numeric"},
{
"name": "user_embedding",
"type": "vector",
"attrs": {
"dims": 3,
"distance_metric": "cosine",
"algorithm": "flat",
"datatype": "float32"
}
}
]
}
```
## Sample Dataset Preparation
Below, create a mock dataset with `user`, `job`, `age`, `credit_score`, and
`user_embedding` fields. The `user_embedding` vectors are synthetic examples
for demonstration purposes.
For more information on creating real-world embeddings, refer to this
[article](https://mlops.community/vector-similarity-search-from-basics-to-production/).
```python
import numpy as np
data = [
{
'user': 'john',
'age': 1,
'job': 'engineer',
'credit_score': 'high',
'user_embedding': np.array([0.1, 0.1, 0.5], dtype=np.float32).tobytes()
},
{
'user': 'mary',
'age': 2,
'job': 'doctor',
'credit_score': 'low',
'user_embedding': np.array([0.1, 0.1, 0.5], dtype=np.float32).tobytes()
},
{
'user': 'joe',
'age': 3,
'job': 'dentist',
'credit_score': 'medium',
'user_embedding': np.array([0.9, 0.9, 0.1], dtype=np.float32).tobytes()
}
]
```
As seen above, the sample `user_embedding` vectors are converted into bytes. Using the `NumPy`, this is fairly trivial.
## Create a `SearchIndex`
With the schema and sample dataset ready, create a `SearchIndex`.
### Bring your own Redis connection instance
This is ideal in scenarios where you have custom settings on the connection instance or if your application will share a connection pool:
```python
from redisvl.index import SearchIndex
from redis import Redis
client = Redis.from_url("redis://localhost:6379")
index = SearchIndex.from_dict(schema, redis_client=client, validate_on_load=True)
```
### Let the index manage the connection instance
This is ideal for simple cases:
```python
index = SearchIndex.from_dict(schema, redis_url="redis://localhost:6379", validate_on_load=True)
# If you don't specify a client or Redis URL, the index will attempt to
# connect to Redis at the default address "redis://localhost:6379".
```
### Create the index
Now that we are connected to Redis, we need to run the create command.
```python
index.create(overwrite=True)
```
13:00:22 redisvl.index.index INFO Index already exists, overwriting.
Note that at this point, the index has no entries. Data loading follows.
## Inspect with the `rvl` CLI
Use the `rvl` CLI to inspect the created index and its fields:
```python
!rvl index listall
```
13:00:24 [RedisVL] INFO Indices:
13:00:24 [RedisVL] INFO 1. user_simple
```python
!rvl index info -i user_simple
```
Index Information:
╭──────────────────────┬──────────────────────┬──────────────────────┬──────────────────────┬──────────────────────╮
│ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │
├──────────────────────┼──────────────────────┼──────────────────────┼──────────────────────┼──────────────────────┤
| user_simple | HASH | ['user_simple_docs'] | [] | 0 |
╰──────────────────────┴──────────────────────┴──────────────────────┴──────────────────────┴──────────────────────╯
Index Fields:
╭─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────╮
│ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │
├─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┤
│ user │ user │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │
│ credit_score │ credit_score │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │
│ job │ job │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │
│ age │ age │ NUMERIC │ │ │ │ │ │ │ │ │
│ user_embedding │ user_embedding │ VECTOR │ algorithm │ FLAT │ data_type │ FLOAT32 │ dim │ 3 │ distance_metric │ COSINE │
╰─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────╯
## Load Data to `SearchIndex`
Load the sample dataset to Redis.
### Validate data entries on load
RedisVL uses pydantic validation under the hood to ensure loaded data is valid and confirms to your schema. This setting is optional and can be configured in the `SearchIndex` class.
```python
keys = index.load(data)
print(keys)
```
['user_simple_docs:01JY4J4Y08GFY10VMB9D4YDMZQ', 'user_simple_docs:01JY4J4Y0AY2MKJ24QXQS2Q2YS', 'user_simple_docs:01JY4J4Y0A9GFF2XG1R81EFD4Z']
By default, `load` will create a unique Redis key as a combination of the index key `prefix` and a random ULID. You can also customize the key by providing direct keys or pointing to a specified `id_field` on load.
### Load INVALID data
This will raise a `SchemaValidationError` if `validate_on_load` is set to true in the `SearchIndex` class.
```python
# NBVAL_SKIP
try:
keys = index.load([{"user_embedding": True}])
except Exception as e:
print(str(e))
```
13:00:27 redisvl.index.index ERROR Data validation failed during load operation
Schema validation failed for object at index 0. Field 'user_embedding' expects bytes (vector data), but got boolean value 'True'. If this should be a vector field, provide a list of numbers or bytes. If this should be a different field type, check your schema definition.
Object data: {
"user_embedding": true
}
Hint: Check that your data types match the schema field definitions. Use index.schema.fields to view expected field types.
### Upsert the index with new data
Upsert data by using the `load` method again:
```python
# Add more data
new_data = [{
'user': 'tyler',
'age': 9,
'job': 'engineer',
'credit_score': 'high',
'user_embedding': np.array([0.1, 0.3, 0.5], dtype=np.float32).tobytes()
}]
keys = index.load(new_data)
print(keys)
```
['user_simple_docs:01JY4J4Y0N4CNR9Y6R67MMVG7Q']
## Creating `VectorQuery` Objects
Next we will create a vector query object for our newly populated index. This example will use a simple vector to demonstrate how vector similarity works. Vectors in production will likely be much larger than 3 floats and often require Machine Learning models (i.e. Huggingface sentence transformers) or an embeddings API (Cohere, OpenAI). `redisvl` provides a set of [Vectorizers]({{< relref "vectorizers#openai" >}}) to assist in vector creation.
```python
from redisvl.query import VectorQuery
from jupyterutils import result_print
query = VectorQuery(
vector=[0.1, 0.1, 0.5],
vector_field_name="user_embedding",
return_fields=["user", "age", "job", "credit_score", "vector_distance"],
num_results=3
)
```
**Note:** For HNSW and SVS-VAMANA indexes, you can tune search performance using runtime parameters:
```python
# Example with HNSW runtime parameters
query = VectorQuery(
vector=[0.1, 0.1, 0.5],
vector_field_name="user_embedding",
return_fields=["user", "age", "job"],
num_results=3,
ef_runtime=50 # Higher for better recall (HNSW only)
)
```
See the [SVS-VAMANA guide](09_svs_vamana.ipynb) and [Advanced Queries guide](11_advanced_queries.ipynb) for more details on runtime parameters.
### Executing queries
With our `VectorQuery` object defined above, we can execute the query over the `SearchIndex` using the `query` method.
```python
results = index.query(query)
result_print(results)
```
| vector_distance | user | age | job | credit_score |
|---|
| 0 | john | 1 | engineer | high |
| 0 | mary | 2 | doctor | low |
| 0 | john | 1 | engineer | high |
## Using an Asynchronous Redis Client
The `AsyncSearchIndex` class along with an async Redis python client allows for queries, index creation, and data loading to be done asynchronously. This is the
recommended route for working with `redisvl` in production-like settings.
```python
schema
```
{'index': {'name': 'user_simple', 'prefix': 'user_simple_docs'},
'fields': [{'name': 'user', 'type': 'tag'},
{'name': 'credit_score', 'type': 'tag'},
{'name': 'job', 'type': 'text'},
{'name': 'age', 'type': 'numeric'},
{'name': 'user_embedding',
'type': 'vector',
'attrs': {'dims': 3,
'distance_metric': 'cosine',
'algorithm': 'flat',
'datatype': 'float32'}}]}
```python
from redisvl.index import AsyncSearchIndex
from redis.asyncio import Redis
client = Redis.from_url("redis://localhost:6379")
index = AsyncSearchIndex.from_dict(schema, redis_client=client)
```
```python
# execute the vector query async
results = await index.query(query)
result_print(results)
```
| vector_distance | user | age | job | credit_score |
|---|
| 0 | john | 1 | engineer | high |
| 0 | mary | 2 | doctor | low |
| 0 | john | 1 | engineer | high |
## Updating a schema
In some scenarios, it makes sense to update the index schema. With Redis and `redisvl`, this is easy because Redis can keep the underlying data in place while you change or make updates to the index configuration.
So for our scenario, let's imagine we want to reindex this data in 2 ways:
- by using a `Tag` type for `job` field instead of `Text`
- by using an `hnsw` vector index for the `user_embedding` field instead of a `flat` vector index
```python
# Modify this schema to have what we want
index.schema.remove_field("job")
index.schema.remove_field("user_embedding")
index.schema.add_fields([
{"name": "job", "type": "tag"},
{
"name": "user_embedding",
"type": "vector",
"attrs": {
"dims": 3,
"distance_metric": "cosine",
"algorithm": "hnsw",
"datatype": "float32"
}
}
])
```
```python
# Run the index update but keep underlying data in place
await index.create(overwrite=True, drop=False)
```
13:00:27 redisvl.index.index INFO Index already exists, overwriting.
```python
# Execute the vector query async
results = await index.query(query)
result_print(results)
```
| vector_distance | user | age | job | credit_score |
|---|
| 0 | mary | 2 | doctor | low |
| 0 | john | 1 | engineer | high |
| 0 | john | 1 | engineer | high |
## Check Index Stats
Use the `rvl` CLI to check the stats for the index:
```python
!rvl stats -i user_simple
```
Statistics:
╭─────────────────────────────┬────────────╮
│ Stat Key │ Value │
├─────────────────────────────┼────────────┤
│ num_docs │ 10 │
│ num_terms │ 0 │
│ max_doc_id │ 10 │
│ num_records │ 50 │
│ percent_indexed │ 1 │
│ hash_indexing_failures │ 0 │
│ number_of_uses │ 2 │
│ bytes_per_record_avg │ 19.5200004 │
│ doc_table_size_mb │ 0.00105857 │
│ inverted_sz_mb │ 9.30786132 │
│ key_table_size_mb │ 4.70161437 │
│ offset_bits_per_record_avg │ nan │
│ offset_vectors_sz_mb │ 0 │
│ offsets_per_term_avg │ 0 │
│ records_per_doc_avg │ 5 │
│ sortable_values_size_mb │ 0 │
│ total_indexing_time │ 0.16899999 │
│ total_inverted_index_blocks │ 11 │
│ vector_index_sz_mb │ 0.23619842 │
╰─────────────────────────────┴────────────╯
## Cleanup
Below we will clean up after our work. First, you can flush all data from Redis associated with the index by
using the `.clear()` method. This will leave the secondary index in place for future insertions or updates.
But if you want to clean up everything, including the index, just use `.delete()`
which will by default remove the index AND the underlying data.
```python
# Clear all data from Redis associated with the index
await index.clear()
```
10
```python
# Butm the index is still in place
await index.exists()
```
True
```python
# Remove / delete the index in its entirety
await index.delete()
```