--- linkTitle: Getting started with RedisVL title: Getting Started with RedisVL weight: 01 url: '/develop/ai/redisvl/0.9.1/user_guide/getting_started/' --- `redisvl` is a versatile Python library with an integrated CLI, designed to enhance AI applications using Redis. This guide will walk you through the following steps: 1. Defining an `IndexSchema` 2. Preparing a sample dataset 3. Creating a `SearchIndex` object 4. Testing `rvl` CLI functionality 5. Loading the sample data 6. Building `VectorQuery` objects and executing searches 7. Updating a `SearchIndex` object ...and more! Prerequisites: - Ensure `redisvl` is installed in your Python environment. - Have a running instance of [Redis Stack](https://redis.io/docs/install/install-stack/) or [Redis Cloud](https://redis.io/cloud). _____ ## Define an `IndexSchema` The `IndexSchema` maintains crucial **index configuration** and **field definitions** to enable search with Redis. For ease of use, the schema can be constructed from a python dictionary or yaml file. ### Example Schema Creation Consider a dataset with user information, including `job`, `age`, `credit_score`, and a 3-dimensional `user_embedding` vector. You must also decide on a Redis index name and key prefix to use for this dataset. Below are example schema definitions in both YAML and Dict format. **YAML Definition:** ```yaml version: '0.1.0' index: name: user_simple prefix: user_simple_docs fields: - name: user type: tag - name: credit_score type: tag - name: job type: text - name: age type: numeric - name: user_embedding type: vector attrs: algorithm: flat dims: 3 distance_metric: cosine datatype: float32 ``` Store this in a local file, such as `schema.yaml`, for RedisVL usage. **Python Dictionary:** ```python schema = { "index": { "name": "user_simple", "prefix": "user_simple_docs", }, "fields": [ {"name": "user", "type": "tag"}, {"name": "credit_score", "type": "tag"}, {"name": "job", "type": "text"}, {"name": "age", "type": "numeric"}, { "name": "user_embedding", "type": "vector", "attrs": { "dims": 3, "distance_metric": "cosine", "algorithm": "flat", "datatype": "float32" } } ] } ``` ## Sample Dataset Preparation Below, create a mock dataset with `user`, `job`, `age`, `credit_score`, and `user_embedding` fields. The `user_embedding` vectors are synthetic examples for demonstration purposes. For more information on creating real-world embeddings, refer to this [article](https://mlops.community/vector-similarity-search-from-basics-to-production/). ```python import numpy as np data = [ { 'user': 'john', 'age': 1, 'job': 'engineer', 'credit_score': 'high', 'user_embedding': np.array([0.1, 0.1, 0.5], dtype=np.float32).tobytes() }, { 'user': 'mary', 'age': 2, 'job': 'doctor', 'credit_score': 'low', 'user_embedding': np.array([0.1, 0.1, 0.5], dtype=np.float32).tobytes() }, { 'user': 'joe', 'age': 3, 'job': 'dentist', 'credit_score': 'medium', 'user_embedding': np.array([0.9, 0.9, 0.1], dtype=np.float32).tobytes() } ] ``` As seen above, the sample `user_embedding` vectors are converted into bytes. Using the `NumPy`, this is fairly trivial. ## Create a `SearchIndex` With the schema and sample dataset ready, create a `SearchIndex`. ### Bring your own Redis connection instance This is ideal in scenarios where you have custom settings on the connection instance or if your application will share a connection pool: ```python from redisvl.index import SearchIndex from redis import Redis client = Redis.from_url("redis://localhost:6379") index = SearchIndex.from_dict(schema, redis_client=client, validate_on_load=True) ``` ### Let the index manage the connection instance This is ideal for simple cases: ```python index = SearchIndex.from_dict(schema, redis_url="redis://localhost:6379", validate_on_load=True) # If you don't specify a client or Redis URL, the index will attempt to # connect to Redis at the default address "redis://localhost:6379". ``` ### Create the index Now that we are connected to Redis, we need to run the create command. ```python index.create(overwrite=True) ``` 13:00:22 redisvl.index.index INFO Index already exists, overwriting. Note that at this point, the index has no entries. Data loading follows. ## Inspect with the `rvl` CLI Use the `rvl` CLI to inspect the created index and its fields: ```python !rvl index listall ``` 13:00:24 [RedisVL] INFO Indices: 13:00:24 [RedisVL] INFO 1. user_simple ```python !rvl index info -i user_simple ``` Index Information: ╭──────────────────────┬──────────────────────┬──────────────────────┬──────────────────────┬──────────────────────╮ │ Index Name │ Storage Type │ Prefixes │ Index Options │ Indexing │ ├──────────────────────┼──────────────────────┼──────────────────────┼──────────────────────┼──────────────────────┤ | user_simple | HASH | ['user_simple_docs'] | [] | 0 | ╰──────────────────────┴──────────────────────┴──────────────────────┴──────────────────────┴──────────────────────╯ Index Fields: ╭─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────┬─────────────────╮ │ Name │ Attribute │ Type │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ Field Option │ Option Value │ ├─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┼─────────────────┤ │ user │ user │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │ │ credit_score │ credit_score │ TAG │ SEPARATOR │ , │ │ │ │ │ │ │ │ job │ job │ TEXT │ WEIGHT │ 1 │ │ │ │ │ │ │ │ age │ age │ NUMERIC │ │ │ │ │ │ │ │ │ │ user_embedding │ user_embedding │ VECTOR │ algorithm │ FLAT │ data_type │ FLOAT32 │ dim │ 3 │ distance_metric │ COSINE │ ╰─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────┴─────────────────╯ ## Load Data to `SearchIndex` Load the sample dataset to Redis. ### Validate data entries on load RedisVL uses pydantic validation under the hood to ensure loaded data is valid and confirms to your schema. This setting is optional and can be configured in the `SearchIndex` class. ```python keys = index.load(data) print(keys) ``` ['user_simple_docs:01JY4J4Y08GFY10VMB9D4YDMZQ', 'user_simple_docs:01JY4J4Y0AY2MKJ24QXQS2Q2YS', 'user_simple_docs:01JY4J4Y0A9GFF2XG1R81EFD4Z'] By default, `load` will create a unique Redis key as a combination of the index key `prefix` and a random ULID. You can also customize the key by providing direct keys or pointing to a specified `id_field` on load. ### Load INVALID data This will raise a `SchemaValidationError` if `validate_on_load` is set to true in the `SearchIndex` class. ```python # NBVAL_SKIP try: keys = index.load([{"user_embedding": True}]) except Exception as e: print(str(e)) ``` 13:00:27 redisvl.index.index ERROR Data validation failed during load operation Schema validation failed for object at index 0. Field 'user_embedding' expects bytes (vector data), but got boolean value 'True'. If this should be a vector field, provide a list of numbers or bytes. If this should be a different field type, check your schema definition. Object data: { "user_embedding": true } Hint: Check that your data types match the schema field definitions. Use index.schema.fields to view expected field types. ### Upsert the index with new data Upsert data by using the `load` method again: ```python # Add more data new_data = [{ 'user': 'tyler', 'age': 9, 'job': 'engineer', 'credit_score': 'high', 'user_embedding': np.array([0.1, 0.3, 0.5], dtype=np.float32).tobytes() }] keys = index.load(new_data) print(keys) ``` ['user_simple_docs:01JY4J4Y0N4CNR9Y6R67MMVG7Q'] ## Creating `VectorQuery` Objects Next we will create a vector query object for our newly populated index. This example will use a simple vector to demonstrate how vector similarity works. Vectors in production will likely be much larger than 3 floats and often require Machine Learning models (i.e. Huggingface sentence transformers) or an embeddings API (Cohere, OpenAI). `redisvl` provides a set of [Vectorizers]({{< relref "vectorizers#openai" >}}) to assist in vector creation. ```python from redisvl.query import VectorQuery from jupyterutils import result_print query = VectorQuery( vector=[0.1, 0.1, 0.5], vector_field_name="user_embedding", return_fields=["user", "age", "job", "credit_score", "vector_distance"], num_results=3 ) ``` ### Executing queries With our `VectorQuery` object defined above, we can execute the query over the `SearchIndex` using the `query` method. ```python results = index.query(query) result_print(results) ```
vector_distanceuseragejobcredit_score
0john1engineerhigh
0mary2doctorlow
0john1engineerhigh
## Using an Asynchronous Redis Client The `AsyncSearchIndex` class along with an async Redis python client allows for queries, index creation, and data loading to be done asynchronously. This is the recommended route for working with `redisvl` in production-like settings. ```python schema ``` {'index': {'name': 'user_simple', 'prefix': 'user_simple_docs'}, 'fields': [{'name': 'user', 'type': 'tag'}, {'name': 'credit_score', 'type': 'tag'}, {'name': 'job', 'type': 'text'}, {'name': 'age', 'type': 'numeric'}, {'name': 'user_embedding', 'type': 'vector', 'attrs': {'dims': 3, 'distance_metric': 'cosine', 'algorithm': 'flat', 'datatype': 'float32'}}]} ```python from redisvl.index import AsyncSearchIndex from redis.asyncio import Redis client = Redis.from_url("redis://localhost:6379") index = AsyncSearchIndex.from_dict(schema, redis_client=client) ``` ```python # execute the vector query async results = await index.query(query) result_print(results) ```
vector_distanceuseragejobcredit_score
0john1engineerhigh
0mary2doctorlow
0john1engineerhigh
## Updating a schema In some scenarios, it makes sense to update the index schema. With Redis and `redisvl`, this is easy because Redis can keep the underlying data in place while you change or make updates to the index configuration. So for our scenario, let's imagine we want to reindex this data in 2 ways: - by using a `Tag` type for `job` field instead of `Text` - by using an `hnsw` vector index for the `user_embedding` field instead of a `flat` vector index ```python # Modify this schema to have what we want index.schema.remove_field("job") index.schema.remove_field("user_embedding") index.schema.add_fields([ {"name": "job", "type": "tag"}, { "name": "user_embedding", "type": "vector", "attrs": { "dims": 3, "distance_metric": "cosine", "algorithm": "hnsw", "datatype": "float32" } } ]) ``` ```python # Run the index update but keep underlying data in place await index.create(overwrite=True, drop=False) ``` 13:00:27 redisvl.index.index INFO Index already exists, overwriting. ```python # Execute the vector query async results = await index.query(query) result_print(results) ```
vector_distanceuseragejobcredit_score
0mary2doctorlow
0john1engineerhigh
0john1engineerhigh
## Check Index Stats Use the `rvl` CLI to check the stats for the index: ```python !rvl stats -i user_simple ``` Statistics: ╭─────────────────────────────┬────────────╮ │ Stat Key │ Value │ ├─────────────────────────────┼────────────┤ │ num_docs │ 10 │ │ num_terms │ 0 │ │ max_doc_id │ 10 │ │ num_records │ 50 │ │ percent_indexed │ 1 │ │ hash_indexing_failures │ 0 │ │ number_of_uses │ 2 │ │ bytes_per_record_avg │ 19.5200004 │ │ doc_table_size_mb │ 0.00105857 │ │ inverted_sz_mb │ 9.30786132 │ │ key_table_size_mb │ 4.70161437 │ │ offset_bits_per_record_avg │ nan │ │ offset_vectors_sz_mb │ 0 │ │ offsets_per_term_avg │ 0 │ │ records_per_doc_avg │ 5 │ │ sortable_values_size_mb │ 0 │ │ total_indexing_time │ 0.16899999 │ │ total_inverted_index_blocks │ 11 │ │ vector_index_sz_mb │ 0.23619842 │ ╰─────────────────────────────┴────────────╯ ## Cleanup Below we will clean up after our work. First, you can flush all data from Redis associated with the index by using the `.clear()` method. This will leave the secondary index in place for future insertions or updates. But if you want to clean up everything, including the index, just use `.delete()` which will by default remove the index AND the underlying data. ```python # Clear all data from Redis associated with the index await index.clear() ``` 10 ```python # Butm the index is still in place await index.exists() ``` True ```python # Remove / delete the index in its entirety await index.delete() ```