---
linkTitle: LLM cache
title: LLM Cache
url: '/develop/ai/redisvl/0.8.0/api/cache/'
---
## SemanticCache
### `class SemanticCache(name='llmcache', distance_threshold=0.1, ttl=None, vectorizer=None, filterable_fields=None, redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={}, overwrite=False, **kwargs)`
Bases: `BaseLLMCache`
Semantic Cache for Large Language Models.
Semantic Cache for Large Language Models.
* **Parameters:**
* **name** (*str* *,* *optional*) – The name of the semantic cache search index.
Defaults to "llmcache".
* **distance_threshold** (*float* *,* *optional*) – Semantic threshold for the
cache. Defaults to 0.1.
* **ttl** (*Optional* *[* *int* *]* *,* *optional*) – The time-to-live for records cached
in Redis. Defaults to None.
* **vectorizer** (*Optional* *[* *BaseVectorizer* *]* *,* *optional*) – The vectorizer for the cache.
Defaults to HFTextVectorizer.
* **filterable_fields** (*Optional* *[* *List* *[* *Dict* *[* *str* *,* *Any* *]* *]* *]*) – An optional list of RedisVL fields
that can be used to customize cache retrieval with filters.
* **redis_client** (*Optional* *[* *Redis* *]* *,* *optional*) – A redis client connection instance.
Defaults to None.
* **redis_url** (*str* *,* *optional*) – The redis url. Defaults to redis://localhost:6379.
* **connection_kwargs** (*Dict* *[* *str* *,* *Any* *]*) – The connection arguments
for the redis client. Defaults to empty {}.
* **overwrite** (*bool*) – Whether or not to force overwrite the schema for
the semantic cache index. Defaults to false.
* **Raises:**
* **TypeError** – If an invalid vectorizer is provided.
* **TypeError** – If the TTL value is not an int.
* **ValueError** – If the threshold is not between 0 and 1.
* **ValueError** – If existing schema does not match new schema and overwrite is False.
#### `async acheck(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)`
Async check the semantic cache for results similar to the specified prompt
or vector.
This method searches the cache using vector similarity with
either a raw text prompt (converted to a vector) or a provided vector as
input. It checks for semantically similar prompts and fetches the cached
LLM responses.
* **Parameters:**
* **prompt** (*Optional* *[* *str* *]* *,* *optional*) – The text prompt to search for in
the cache.
* **vector** (*Optional* *[* *List* *[* *float* *]* *]* *,* *optional*) – The vector representation
of the prompt to search for in the cache.
* **num_results** (*int* *,* *optional*) – The number of cached results to return.
Defaults to 1.
* **return_fields** (*Optional* *[* *List* *[* *str* *]* *]* *,* *optional*) – The fields to include
in each returned result. If None, defaults to all available
fields in the cached entry.
* **filter_expression** (*Optional* *[*[*FilterExpression*]({{< relref "filter/#filterexpression" >}}) *]*) – Optional filter expression
that can be used to filter cache results. Defaults to None and
the full cache will be searched.
* **distance_threshold** (*Optional* *[* *float* *]*) – The threshold for semantic
vector distance.
* **Returns:**
A list of dicts containing the requested
: return fields for each similar cached response.
* **Return type:**
List[Dict[str, Any]]
* **Raises:**
* **ValueError** – If neither a prompt nor a vector is specified.
* **ValueError** – if ‘vector’ has incorrect dimensions.
* **TypeError** – If return_fields is not a list when provided.
```python
response = await cache.acheck(
prompt="What is the capital city of France?"
)
```
#### `async aclear()`
Async clear the cache of all keys.
* **Return type:**
None
#### `async adelete()`
Async delete the cache and its index entirely.
* **Return type:**
None
#### `async adisconnect()`
Asynchronously disconnect from Redis and search index.
Closes all Redis connections and index connections.
#### `async adrop(ids=None, keys=None)`
Async drop specific entries from the cache by ID or Redis key.
* **Parameters:**
* **ids** (*Optional* *[* *List* *[* *str* *]* *]*) – List of entry IDs to remove from the cache.
Entry IDs are the unique identifiers without the cache prefix.
* **keys** (*Optional* *[* *List* *[* *str* *]* *]*) – List of full Redis keys to remove from the cache.
Keys are the complete Redis keys including the cache prefix.
* **Return type:**
None
#### `NOTE`
At least one of ids or keys must be provided.
* **Raises:**
**ValueError** – If neither ids nor keys is provided.
* **Parameters:**
* **ids** (*List* *[* *str* *]* *|* *None*)
* **keys** (*List* *[* *str* *]* *|* *None*)
* **Return type:**
None
#### `async aexpire(key, ttl=None)`
Asynchronously set or refresh the expiration time for a key in the cache.
* **Parameters:**
* **key** (*str*) – The Redis key to set the expiration on.
* **ttl** (*Optional* *[* *int* *]* *,* *optional*) – The time-to-live in seconds. If None,
uses the default TTL configured for this cache instance.
Defaults to None.
* **Return type:**
None
#### `NOTE`
If neither the provided TTL nor the default TTL is set (both are None),
this method will have no effect.
#### `async astore(prompt, response, vector=None, metadata=None, filters=None, ttl=None)`
Async stores the specified key-value pair in the cache along with metadata.
* **Parameters:**
* **prompt** (*str*) – The user prompt to cache.
* **response** (*str*) – The LLM response to cache.
* **vector** (*Optional* *[* *List* *[* *float* *]* *]* *,* *optional*) – The prompt vector to
cache. Defaults to None, and the prompt vector is generated on
demand.
* **metadata** (*Optional* *[* *Dict* *[* *str* *,* *Any* *]* *]* *,* *optional*) – The optional metadata to cache
alongside the prompt and response. Defaults to None.
* **filters** (*Optional* *[* *Dict* *[* *str* *,* *Any* *]* *]*) – The optional tag to assign to the cache entry.
Defaults to None.
* **ttl** (*Optional* *[* *int* *]*) – The optional TTL override to use on this individual cache
entry. Defaults to the global TTL setting.
* **Returns:**
The Redis key for the entries added to the semantic cache.
* **Return type:**
str
* **Raises:**
* **ValueError** – If neither prompt nor vector is specified.
* **ValueError** – if vector has incorrect dimensions.
* **TypeError** – If provided metadata is not a dictionary.
```python
key = await cache.astore(
prompt="What is the capital city of France?",
response="Paris",
metadata={"city": "Paris", "country": "France"}
)
```
#### `async aupdate(key, **kwargs)`
Async update specific fields within an existing cache entry. If no fields
are passed, then only the document TTL is refreshed.
* **Parameters:**
**key** (*str*) – the key of the document to update using kwargs.
* **Raises:**
* **ValueError if an incorrect mapping is provided as a kwarg.** –
* **TypeError if metadata is provided and not** **of** **type dict.** –
* **Return type:**
None
```python
key = await cache.astore('this is a prompt', 'this is a response')
await cache.aupdate(
key,
metadata={"hit_count": 1, "model_name": "Llama-2-7b"}
)
```
#### `check(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None, distance_threshold=None)`
Checks the semantic cache for results similar to the specified prompt
or vector.
This method searches the cache using vector similarity with
either a raw text prompt (converted to a vector) or a provided vector as
input. It checks for semantically similar prompts and fetches the cached
LLM responses.
* **Parameters:**
* **prompt** (*Optional* *[* *str* *]* *,* *optional*) – The text prompt to search for in
the cache.
* **vector** (*Optional* *[* *List* *[* *float* *]* *]* *,* *optional*) – The vector representation
of the prompt to search for in the cache.
* **num_results** (*int* *,* *optional*) – The number of cached results to return.
Defaults to 1.
* **return_fields** (*Optional* *[* *List* *[* *str* *]* *]* *,* *optional*) – The fields to include
in each returned result. If None, defaults to all available
fields in the cached entry.
* **filter_expression** (*Optional* *[*[*FilterExpression*]({{< relref "filter/#filterexpression" >}}) *]*) – Optional filter expression
that can be used to filter cache results. Defaults to None and
the full cache will be searched.
* **distance_threshold** (*Optional* *[* *float* *]*) – The threshold for semantic
vector distance.
* **Returns:**
A list of dicts containing the requested
: return fields for each similar cached response.
* **Return type:**
List[Dict[str, Any]]
* **Raises:**
* **ValueError** – If neither a prompt nor a vector is specified.
* **ValueError** – if ‘vector’ has incorrect dimensions.
* **TypeError** – If return_fields is not a list when provided.
```python
response = cache.check(
prompt="What is the capital city of France?"
)
```
#### `clear()`
Clear the cache of all keys.
* **Return type:**
None
#### `delete()`
Delete the cache and its index entirely.
* **Return type:**
None
#### `disconnect()`
Disconnect from Redis and search index.
Closes all Redis connections and index connections.
#### `drop(ids=None, keys=None)`
Drop specific entries from the cache by ID or Redis key.
* **Parameters:**
* **ids** (*Optional* *[* *List* *[* *str* *]* *]*) – List of entry IDs to remove from the cache.
Entry IDs are the unique identifiers without the cache prefix.
* **keys** (*Optional* *[* *List* *[* *str* *]* *]*) – List of full Redis keys to remove from the cache.
Keys are the complete Redis keys including the cache prefix.
* **Return type:**
None
#### `NOTE`
At least one of ids or keys must be provided.
* **Raises:**
**ValueError** – If neither ids nor keys is provided.
* **Parameters:**
* **ids** (*List* *[* *str* *]* *|* *None*)
* **keys** (*List* *[* *str* *]* *|* *None*)
* **Return type:**
None
#### `expire(key, ttl=None)`
Set or refresh the expiration time for a key in the cache.
* **Parameters:**
* **key** (*str*) – The Redis key to set the expiration on.
* **ttl** (*Optional* *[* *int* *]* *,* *optional*) – The time-to-live in seconds. If None,
uses the default TTL configured for this cache instance.
Defaults to None.
* **Return type:**
None
#### `NOTE`
If neither the provided TTL nor the default TTL is set (both are None),
this method will have no effect.
#### `set_threshold(distance_threshold)`
Sets the semantic distance threshold for the cache.
* **Parameters:**
**distance_threshold** (*float*) – The semantic distance threshold for
the cache.
* **Raises:**
**ValueError** – If the threshold is not between 0 and 1.
* **Return type:**
None
#### `set_ttl(ttl=None)`
Set the default TTL, in seconds, for entries in the cache.
* **Parameters:**
**ttl** (*Optional* *[* *int* *]* *,* *optional*) – The optional time-to-live expiration
for the cache, in seconds.
* **Raises:**
**ValueError** – If the time-to-live value is not an integer.
* **Return type:**
None
#### `store(prompt, response, vector=None, metadata=None, filters=None, ttl=None)`
Stores the specified key-value pair in the cache along with metadata.
* **Parameters:**
* **prompt** (*str*) – The user prompt to cache.
* **response** (*str*) – The LLM response to cache.
* **vector** (*Optional* *[* *List* *[* *float* *]* *]* *,* *optional*) – The prompt vector to
cache. Defaults to None, and the prompt vector is generated on
demand.
* **metadata** (*Optional* *[* *Dict* *[* *str* *,* *Any* *]* *]* *,* *optional*) – The optional metadata to cache
alongside the prompt and response. Defaults to None.
* **filters** (*Optional* *[* *Dict* *[* *str* *,* *Any* *]* *]*) – The optional tag to assign to the cache entry.
Defaults to None.
* **ttl** (*Optional* *[* *int* *]*) – The optional TTL override to use on this individual cache
entry. Defaults to the global TTL setting.
* **Returns:**
The Redis key for the entries added to the semantic cache.
* **Return type:**
str
* **Raises:**
* **ValueError** – If neither prompt nor vector is specified.
* **ValueError** – if vector has incorrect dimensions.
* **TypeError** – If provided metadata is not a dictionary.
```python
key = cache.store(
prompt="What is the capital city of France?",
response="Paris",
metadata={"city": "Paris", "country": "France"}
)
```
#### `update(key, **kwargs)`
Update specific fields within an existing cache entry. If no fields
are passed, then only the document TTL is refreshed.
* **Parameters:**
**key** (*str*) – the key of the document to update using kwargs.
* **Raises:**
* **ValueError if an incorrect mapping is provided as a kwarg.** –
* **TypeError if metadata is provided and not** **of** **type dict.** –
* **Return type:**
None
```python
key = cache.store('this is a prompt', 'this is a response')
cache.update(key, metadata={"hit_count": 1, "model_name": "Llama-2-7b"})
```
#### `property aindex: `[`AsyncSearchIndex`]({{< relref "searchindex/#asyncsearchindex" >}})` | None`
The underlying AsyncSearchIndex for the cache.
* **Returns:**
The async search index.
* **Return type:**
[AsyncSearchIndex]({{< relref "searchindex/#asyncsearchindex" >}})
#### `property distance_threshold: float`
The semantic distance threshold for the cache.
* **Returns:**
The semantic distance threshold.
* **Return type:**
float
#### `property index: `[`SearchIndex`]({{< relref "searchindex/#searchindex" >}})` `
The underlying SearchIndex for the cache.
* **Returns:**
The search index.
* **Return type:**
[SearchIndex]({{< relref "searchindex/#searchindex" >}})
#### `property ttl: int | None`
The default TTL, in seconds, for entries in the cache.
# Embeddings Cache
## EmbeddingsCache
### `class EmbeddingsCache(name='embedcache', ttl=None, redis_client=None, async_redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={})`
Bases: `BaseCache`
Embeddings Cache for storing embedding vectors with exact key matching.
Initialize an embeddings cache.
* **Parameters:**
* **name** (*str*) – The name of the cache. Defaults to "embedcache".
* **ttl** (*Optional* *[* *int* *]*) – The time-to-live for cached embeddings. Defaults to None.
* **redis_client** (*Optional* *[* *SyncRedisClient* *]*) – Redis client instance. Defaults to None.
* **redis_url** (*str*) – Redis URL for connection. Defaults to "redis://localhost:6379".
* **connection_kwargs** (*Dict* *[* *str* *,* *Any* *]*) – Redis connection arguments. Defaults to {}.
* **async_redis_client** (*Redis* *|* *RedisCluster* *|* *None*)
* **Raises:**
**ValueError** – If vector dimensions are invalid
```python
cache = EmbeddingsCache(
name="my_embeddings_cache",
ttl=3600, # 1 hour
redis_url="redis://localhost:6379"
)
```
#### `async aclear()`
Async clear the cache of all keys.
* **Return type:**
None
#### `async adisconnect()`
Async disconnect from Redis.
* **Return type:**
None
#### `async adrop(text, model_name)`
Async remove an embedding from the cache.
Asynchronously removes an embedding from the cache.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Return type:**
None
```python
await cache.adrop(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
```
#### `async adrop_by_key(key)`
Async remove an embedding from the cache by its Redis key.
Asynchronously removes an embedding from the cache by its Redis key.
* **Parameters:**
**key** (*str*) – The full Redis key for the embedding.
* **Return type:**
None
```python
await cache.adrop_by_key("embedcache:1234567890abcdef")
```
#### `async aexists(text, model_name)`
Async check if an embedding exists.
Asynchronously checks if an embedding exists for the given text and model.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
True if the embedding exists in the cache, False otherwise.
* **Return type:**
bool
```python
if await cache.aexists("What is machine learning?", "text-embedding-ada-002"):
print("Embedding is in cache")
```
#### `async aexists_by_key(key)`
Async check if an embedding exists for the given Redis key.
Asynchronously checks if an embedding exists for the given Redis key.
* **Parameters:**
**key** (*str*) – The full Redis key for the embedding.
* **Returns:**
True if the embedding exists in the cache, False otherwise.
* **Return type:**
bool
```python
if await cache.aexists_by_key("embedcache:1234567890abcdef"):
print("Embedding is in cache")
```
#### `async aexpire(key, ttl=None)`
Asynchronously set or refresh the expiration time for a key in the cache.
* **Parameters:**
* **key** (*str*) – The Redis key to set the expiration on.
* **ttl** (*Optional* *[* *int* *]* *,* *optional*) – The time-to-live in seconds. If None,
uses the default TTL configured for this cache instance.
Defaults to None.
* **Return type:**
None
#### `NOTE`
If neither the provided TTL nor the default TTL is set (both are None),
this method will have no effect.
#### `async aget(text, model_name)`
Async get embedding by text and model name.
Asynchronously retrieves a cached embedding for the given text and model name.
If found, refreshes the TTL of the entry.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
Embedding cache entry or None if not found.
* **Return type:**
Optional[Dict[str, Any]]
```python
embedding_data = await cache.aget(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
```
#### `async aget_by_key(key)`
Async get embedding by its full Redis key.
Asynchronously retrieves a cached embedding for the given Redis key.
If found, refreshes the TTL of the entry.
* **Parameters:**
**key** (*str*) – The full Redis key for the embedding.
* **Returns:**
Embedding cache entry or None if not found.
* **Return type:**
Optional[Dict[str, Any]]
```python
embedding_data = await cache.aget_by_key("embedcache:1234567890abcdef")
```
#### `async amdrop(texts, model_name)`
Async remove multiple embeddings from the cache by their texts and model name.
Asynchronously removes multiple embeddings in a single operation.
* **Parameters:**
* **texts** (*List* *[* *str* *]*) – List of text inputs that were embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Return type:**
None
```python
# Remove multiple embeddings asynchronously
await cache.amdrop(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
```
#### `async amdrop_by_keys(keys)`
Async remove multiple embeddings from the cache by their Redis keys.
Asynchronously removes multiple embeddings in a single operation.
* **Parameters:**
**keys** (*List* *[* *str* *]*) – List of Redis keys to remove.
* **Return type:**
None
```python
# Remove multiple embeddings asynchronously
await cache.amdrop_by_keys(["embedcache:key1", "embedcache:key2"])
```
#### `async amexists(texts, model_name)`
Async check if multiple embeddings exist by their texts and model name.
Asynchronously checks existence of multiple embeddings in a single operation.
* **Parameters:**
* **texts** (*List* *[* *str* *]*) – List of text inputs that were embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
List of boolean values indicating whether each embedding exists.
* **Return type:**
List[bool]
```python
# Check if multiple embeddings exist asynchronously
exists_results = await cache.amexists(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
```
#### `async amexists_by_keys(keys)`
Async check if multiple embeddings exist by their Redis keys.
Asynchronously checks existence of multiple keys in a single operation.
* **Parameters:**
**keys** (*List* *[* *str* *]*) – List of Redis keys to check.
* **Returns:**
List of boolean values indicating whether each key exists.
The order matches the input keys order.
* **Return type:**
List[bool]
```python
# Check if multiple keys exist asynchronously
exists_results = await cache.amexists_by_keys(["embedcache:key1", "embedcache:key2"])
```
#### `async amget(texts, model_name)`
Async get multiple embeddings by their texts and model name.
Asynchronously retrieves multiple cached embeddings in a single operation.
If found, refreshes the TTL of each entry.
* **Parameters:**
* **texts** (*List* *[* *str* *]*) – List of text inputs that were embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
List of embedding cache entries or None for texts not found.
* **Return type:**
List[Optional[Dict[str, Any]]]
```python
# Get multiple embeddings asynchronously
embedding_data = await cache.amget(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
```
#### `async amget_by_keys(keys)`
Async get multiple embeddings by their Redis keys.
Asynchronously retrieves multiple cached embeddings in a single network roundtrip.
If found, refreshes the TTL of each entry.
* **Parameters:**
**keys** (*List* *[* *str* *]*) – List of Redis keys to retrieve.
* **Returns:**
List of embedding cache entries or None for keys not found.
The order matches the input keys order.
* **Return type:**
List[Optional[Dict[str, Any]]]
```python
# Get multiple embeddings asynchronously
embedding_data = await cache.amget_by_keys([
"embedcache:key1",
"embedcache:key2"
])
```
#### `async amset(items, ttl=None)`
Async store multiple embeddings in a batch operation.
Each item in the input list should be a dictionary with the following fields:
- ‘text’: The text input that was embedded
- ‘model_name’: The name of the embedding model
- ‘embedding’: The embedding vector
- ‘metadata’: Optional metadata to store with the embedding
* **Parameters:**
* **items** (*List* *[* *Dict* *[* *str* *,* *Any* *]* *]*) – List of dictionaries, each containing text, model_name, embedding, and optional metadata.
* **ttl** (*int* *|* *None*) – Optional TTL override for these entries.
* **Returns:**
List of Redis keys where the embeddings were stored.
* **Return type:**
List[str]
```python
# Store multiple embeddings asynchronously
keys = await cache.amset([
{
"text": "What is ML?",
"model_name": "text-embedding-ada-002",
"embedding": [0.1, 0.2, 0.3],
"metadata": {"source": "user"}
},
{
"text": "What is AI?",
"model_name": "text-embedding-ada-002",
"embedding": [0.4, 0.5, 0.6],
"metadata": {"source": "docs"}
}
])
```
#### `async aset(text, model_name, embedding, metadata=None, ttl=None)`
Async store an embedding with its text and model name.
Asynchronously stores an embedding with its text and model name.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **embedding** (*List* *[* *float* *]*) – The embedding vector to store.
* **metadata** (*Optional* *[* *Dict* *[* *str* *,* *Any* *]* *]*) – Optional metadata to store with the embedding.
* **ttl** (*Optional* *[* *int* *]*) – Optional TTL override for this specific entry.
* **Returns:**
The Redis key where the embedding was stored.
* **Return type:**
str
```python
key = await cache.aset(
text="What is machine learning?",
model_name="text-embedding-ada-002",
embedding=[0.1, 0.2, 0.3, ...],
metadata={"source": "user_query"}
)
```
#### `clear()`
Clear the cache of all keys.
* **Return type:**
None
#### `disconnect()`
Disconnect from Redis.
* **Return type:**
None
#### `drop(text, model_name)`
Remove an embedding from the cache.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Return type:**
None
```python
cache.drop(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
```
#### `drop_by_key(key)`
Remove an embedding from the cache by its Redis key.
* **Parameters:**
**key** (*str*) – The full Redis key for the embedding.
* **Return type:**
None
```python
cache.drop_by_key("embedcache:1234567890abcdef")
```
#### `exists(text, model_name)`
Check if an embedding exists for the given text and model.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
True if the embedding exists in the cache, False otherwise.
* **Return type:**
bool
```python
if cache.exists("What is machine learning?", "text-embedding-ada-002"):
print("Embedding is in cache")
```
#### `exists_by_key(key)`
Check if an embedding exists for the given Redis key.
* **Parameters:**
**key** (*str*) – The full Redis key for the embedding.
* **Returns:**
True if the embedding exists in the cache, False otherwise.
* **Return type:**
bool
```python
if cache.exists_by_key("embedcache:1234567890abcdef"):
print("Embedding is in cache")
```
#### `expire(key, ttl=None)`
Set or refresh the expiration time for a key in the cache.
* **Parameters:**
* **key** (*str*) – The Redis key to set the expiration on.
* **ttl** (*Optional* *[* *int* *]* *,* *optional*) – The time-to-live in seconds. If None,
uses the default TTL configured for this cache instance.
Defaults to None.
* **Return type:**
None
#### `NOTE`
If neither the provided TTL nor the default TTL is set (both are None),
this method will have no effect.
#### `get(text, model_name)`
Get embedding by text and model name.
Retrieves a cached embedding for the given text and model name.
If found, refreshes the TTL of the entry.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
Embedding cache entry or None if not found.
* **Return type:**
Optional[Dict[str, Any]]
```python
embedding_data = cache.get(
text="What is machine learning?",
model_name="text-embedding-ada-002"
)
```
#### `get_by_key(key)`
Get embedding by its full Redis key.
Retrieves a cached embedding for the given Redis key.
If found, refreshes the TTL of the entry.
* **Parameters:**
**key** (*str*) – The full Redis key for the embedding.
* **Returns:**
Embedding cache entry or None if not found.
* **Return type:**
Optional[Dict[str, Any]]
```python
embedding_data = cache.get_by_key("embedcache:1234567890abcdef")
```
#### `mdrop(texts, model_name)`
Remove multiple embeddings from the cache by their texts and model name.
Efficiently removes multiple embeddings in a single operation.
* **Parameters:**
* **texts** (*List* *[* *str* *]*) – List of text inputs that were embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Return type:**
None
```python
# Remove multiple embeddings
cache.mdrop(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
```
#### `mdrop_by_keys(keys)`
Remove multiple embeddings from the cache by their Redis keys.
Efficiently removes multiple embeddings in a single operation.
* **Parameters:**
**keys** (*List* *[* *str* *]*) – List of Redis keys to remove.
* **Return type:**
None
```python
# Remove multiple embeddings
cache.mdrop_by_keys(["embedcache:key1", "embedcache:key2"])
```
#### `mexists(texts, model_name)`
Check if multiple embeddings exist by their texts and model name.
Efficiently checks existence of multiple embeddings in a single operation.
* **Parameters:**
* **texts** (*List* *[* *str* *]*) – List of text inputs that were embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
List of boolean values indicating whether each embedding exists.
* **Return type:**
List[bool]
```python
# Check if multiple embeddings exist
exists_results = cache.mexists(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
```
#### `mexists_by_keys(keys)`
Check if multiple embeddings exist by their Redis keys.
Efficiently checks existence of multiple keys in a single operation.
* **Parameters:**
**keys** (*List* *[* *str* *]*) – List of Redis keys to check.
* **Returns:**
List of boolean values indicating whether each key exists.
The order matches the input keys order.
* **Return type:**
List[bool]
```python
# Check if multiple keys exist
exists_results = cache.mexists_by_keys(["embedcache:key1", "embedcache:key2"])
```
#### `mget(texts, model_name)`
Get multiple embeddings by their texts and model name.
Efficiently retrieves multiple cached embeddings in a single operation.
If found, refreshes the TTL of each entry.
* **Parameters:**
* **texts** (*List* *[* *str* *]*) – List of text inputs that were embedded.
* **model_name** (*str*) – The name of the embedding model.
* **Returns:**
List of embedding cache entries or None for texts not found.
* **Return type:**
List[Optional[Dict[str, Any]]]
```python
# Get multiple embeddings
embedding_data = cache.mget(
texts=["What is machine learning?", "What is deep learning?"],
model_name="text-embedding-ada-002"
)
```
#### `mget_by_keys(keys)`
Get multiple embeddings by their Redis keys.
Efficiently retrieves multiple cached embeddings in a single network roundtrip.
If found, refreshes the TTL of each entry.
* **Parameters:**
**keys** (*List* *[* *str* *]*) – List of Redis keys to retrieve.
* **Returns:**
List of embedding cache entries or None for keys not found.
The order matches the input keys order.
* **Return type:**
List[Optional[Dict[str, Any]]]
```python
# Get multiple embeddings
embedding_data = cache.mget_by_keys([
"embedcache:key1",
"embedcache:key2"
])
```
#### `mset(items, ttl=None)`
Store multiple embeddings in a batch operation.
Each item in the input list should be a dictionary with the following fields:
- ‘text’: The text input that was embedded
- ‘model_name’: The name of the embedding model
- ‘embedding’: The embedding vector
- ‘metadata’: Optional metadata to store with the embedding
* **Parameters:**
* **items** (*List* *[* *Dict* *[* *str* *,* *Any* *]* *]*) – List of dictionaries, each containing text, model_name, embedding, and optional metadata.
* **ttl** (*int* *|* *None*) – Optional TTL override for these entries.
* **Returns:**
List of Redis keys where the embeddings were stored.
* **Return type:**
List[str]
```python
# Store multiple embeddings
keys = cache.mset([
{
"text": "What is ML?",
"model_name": "text-embedding-ada-002",
"embedding": [0.1, 0.2, 0.3],
"metadata": {"source": "user"}
},
{
"text": "What is AI?",
"model_name": "text-embedding-ada-002",
"embedding": [0.4, 0.5, 0.6],
"metadata": {"source": "docs"}
}
])
```
#### `set(text, model_name, embedding, metadata=None, ttl=None)`
Store an embedding with its text and model name.
* **Parameters:**
* **text** (*str*) – The text input that was embedded.
* **model_name** (*str*) – The name of the embedding model.
* **embedding** (*List* *[* *float* *]*) – The embedding vector to store.
* **metadata** (*Optional* *[* *Dict* *[* *str* *,* *Any* *]* *]*) – Optional metadata to store with the embedding.
* **ttl** (*Optional* *[* *int* *]*) – Optional TTL override for this specific entry.
* **Returns:**
The Redis key where the embedding was stored.
* **Return type:**
str
```python
key = cache.set(
text="What is machine learning?",
model_name="text-embedding-ada-002",
embedding=[0.1, 0.2, 0.3, ...],
metadata={"source": "user_query"}
)
```
#### `set_ttl(ttl=None)`
Set the default TTL, in seconds, for entries in the cache.
* **Parameters:**
**ttl** (*Optional* *[* *int* *]* *,* *optional*) – The optional time-to-live expiration
for the cache, in seconds.
* **Raises:**
**ValueError** – If the time-to-live value is not an integer.
* **Return type:**
None
#### `property ttl: int | None`
The default TTL, in seconds, for entries in the cache.